A metric to detect fault-prone software modules using text filtering

نویسندگان

  • Osamu Mizuno
  • Hideaki Hata
چکیده

Machine learning approaches have been widely used for fault-prone module detection. Introduction of machine learning approaches induces development of new software metrics for fault-prone module detection. We have proposed an approach to detect fault-prone modules using the spamfiltering technique. To use our approach in the conventional fault-prone module prediction approaches, we construct a metric from the output of spam-filtering based approach. Using our new metric, we conducted an experiment to show the effect of new metric. The result suggested that use of new metric as well as conventional metrics is effective for accuracy of fault-prone module prediction.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Prediction of Fault-prone Modules Using A Text Filtering Based Metric

Machine-learning approaches have been widely used for fault-proneness detection. Introduction of machine learning approaches induces development of new software metrics for fault-prone module detection. We have proposed an approach to detect fault-prone modules using the spam-filtering technique. To treat our approach as the conventional faultprone approaches, we summarize the output of spam-fi...

متن کامل

Prediction of Fault-Prone Software Modules Using a Generic Text Discriminator

This paper describes a novel approach for detecting faultprone modules using a spam filtering technique. Fault-prone module detection in source code is important for the assurance of software quality. Most previous fault-prone detection approaches have been based on using software metrics. Such approaches, however, have difficulties in collecting the metrics and constructing mathematical models...

متن کامل

Evaluation of Classifiers in Software Fault-Proneness Prediction

Reliability of software counts on its fault-prone modules. This means that the less software consists of fault-prone units the more we may trust it. Therefore, if we are able to predict the number of fault-prone modules of software, it will be possible to judge the software reliability. In predicting software fault-prone modules, one of the contributing features is software metric by which one ...

متن کامل

A Hybrid Fault-Proneness Detection Approach Using Text Filtering and Static Code Analysis

We have proposed a fault-prone software module detection method using text-filtering approach, called Fault-proneness filtering. Even though the fault-proneness filtering achieved high accuracy in detecting fault-prone modules, the detail of each fault cannot be specified enough. We thus try to complete such weakness of the fault-proneness filtering by using static code analysis. To do so, we a...

متن کامل

Identifying Fault-Prone Software Modules Using Feed-Forward Networks: A Case Study

Functional complexity of a software module can be measured in terms of static complexity metrics of the program text. Classifying software modules, based on their static complexity measures, into different fault-prone categories is a difficult problem in software engineering. This research investigates the applicability of neural network classifiers for identifying fault-prone software modules ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013